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Ex. 5.1 (Shreve)

Consider the discounted stock price D(t)S(t) of (5.2.19). In this problem, we derive the formula (5.2.20) for
d (D(t)S(t)) by two methods.

(i) Define f(x) = S(0)ex and set

X(t) =

∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)−R(s)− 1

2
σ2(s)

)
ds

so that D(t)S(t) = f (X(t)). Use the Itô-Doeblin formula to compute df (X(t)).

First, recall the definition of an Itô process.

Def. 4.4.3. Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0, be an associated filtration. An
Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du, (4.4.16)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic processes1.

Note that (4.4.16) can be also expresses in the differential notation

dX(t) = ∆(t)dW (t) + Θ(t)dt. (4.4.18)

Next, recall the formula for the quadratic variation of the Itô process, which describes the rate at
which the Itô process accumulates quadratic variation.

Lemma 4.4.4. The quadratic variation of the Itô process (4.4.16) is

[X,X](t) =

∫ t

0

∆2(u)du. (4.4.17)

We have, therefore that
dX(t)dX(t) = ∆2(t)dt.

Finally, recall the Itô-Doeblin formula for an Itô process.

Thm. 4.4.6. Let X(t), t ≥ 0, be an Itô process as described in Definition 4.4.3, and let f(t, x) be a
function for which the partial derivatives ft(t, x), fx(t, x) and fxx(t, x) are defined and continuous. Then,

1We assume that E
∫ t
0 ∆2(u) and

∫ t
0 |Θ(u)|du are finite for every t > 0 so that the integrals on the right-hand side of (4.4.16)

are defined and the Itô integral is a martingale.
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for every T ≥ 0,

f(T,X(T )) =f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))dXt

+
1

2

∫ T

0

fxx(t,X(t))d[X,X](t)

=f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))∆(t)dW (t)

+

∫ T

0

fx(t,X(t))Θ(t)dt+
1

2

∫ T

0

fxx(t,X(t))∆2(t)dt. (4.4.22)

It is easier to remember and use the result of this theorem (4.4.22) if we express it in differential notation
as

df(t,X(t)) =ft(t,X(t))dt+ fx(t,X(t))dX(t)

+
1

2
fxx(t,X(t))dX(t)dX(t) (4.4.23)

=ft(t,X(t))dt+ fx(t,X(t))dX(t)

+ fx(t,X(t))Θ(t)dt+
1

2
fxx(t,X(t))∆2(t)dt. (4.4.24)

Recall formula (5.2.16) for the stock price

S(t) = S(0) exp

{∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

}
, (5.2.16)

with the differential

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t), (5.2.15)

and formula (5.2.17) for discount process

D(t) = e−
∫ t
0
R(s)ds, (5.2.17)

with the differential

dD(t) = −R(t)e
∫ t
0
R(s)ds

= −R(t)D(t)dt. (5.2.18)

Then the discounted stock price process is given by formula (5.2.19)

D(t)S(t) = S(0) exp

{∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)−R(s)− 1

2
σ2(s)

)
ds

}
, (5.2.16)

and its differential is equal to

d(D(t)S(t)) = (α(t)−R(t))D(t)S(t)dt+ σ(t)D(t)S(t)dW (t)

= σ(t)D(t)S(t) [Θ(t)dt+ dW (t)] , (5.2.20)

where

Θ(t) =
α(t)−R(t)

σ(t)
. (5.2.21)

We need to employ the Itô-Doeblin to show that indeed the differential of (5.2.19) is given by (5.2.20).

First, notice that f(x) = S(0)ex, so it does not explicitly depend on time, with f(x) = f ′(x) = f ′′(x) and
that f(X(t)) = S(0)eX(t) = D(t)S(t) by (5.2.19). Moreover, we had the following rules

dW (t)dW (t) = dt,

dtdW (t) = 0,

dtdt = 0.
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Notice that X(t) is given by (4.4.16), which is also the exponent in (5.2.16), so that by (4.4.18) we have

dX(t) = σ(t)dW (t) +

(
α(t)−R(t)− 1

2
σ2(t)

)
dt, (*)

dX(t)dX(t) = σ(t)dt. (**)

Then, by (4.4.22), we can simply write

d (D(t)S(t)) = df(X(t))

= f ′(X(t))dX(t) +
1

2
f ′(X(t))dX(t)dX(t)

= S(0)eX(t)︸ ︷︷ ︸
D(t)S(t)

dX(t)︸ ︷︷ ︸
(∗)

+
1

2
S(0)eX(t)︸ ︷︷ ︸
D(t)S(t)

dX(t)dX(t)︸ ︷︷ ︸
(∗∗)

= D(t)S(t)

[
σ(t)dW (t) +

(
α(t)−R(t)− 1

2
σ2(t)

)
dt+

1

2
σ2(t)

]
= D(t)S(t) [σ(t)dW (t) + (α(t)−R(t) dt]

= D(t)S(t)σ(t) [dW (t) + Θ(t)] ,

which indeed is formula (5.2.20).

(ii) According to Itô’s product rule,

d (D(t)S(t)) = S(t)dD(t) +D(t)dS(t) + dD(t)dS(t).

Use (5.2.15) and (5.2.18) to work out the right-hand side of this equation.

Recall the Itô product rule.

Col. 4.6.3. Let X(t) and Y (t) be Itô processes. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

By (5.2.15) and (5.2.18) we had

dD(t) = −R(t)D(t)dt,

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t).

So now we can simply write by the Iô product rule

d (D(t)S(t)) =S(t)dD(t) +D(t)dS(t) + dD(t)dS(t)

=S(t) [−R(t)D(t)dt] +D(t) [α(t)S(t)dt+ σ(t)S(t)dW (t)]

+ [−R(t)D(t)dt] [α(t)S(t)dt+ σ(t)S(t)dW (t)]︸ ︷︷ ︸
=0

= [α(t)D(t)S(t)−R(t)S(t)D(t)] dt+ σ(t)S(t)dW (t) + 0

=D(t)S(t) [σ(t)dW (t) + (α(t)−R(t) dt]

=D(t)S(t)σ(t) [dW (t) + Θ(t)] ,

so again we obtained formula (5.2.20).
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Ex. 5.8 (Shreve) (Every strictly positive asset is a generalized geo-
metric Brownian motion).

Let (Ω,F ,P) be a probability space on which is defined a Brownian motion W (t), 0 ≤ t ≤ T . Let F(t), 0 ≤ t ≤ T ,
be the filtration generated by this Brownian motion. Assume there is a unique risk-neutral measure P̃, and let
W̃ (t), 0 ≤ t ≤ T , be the Brownian motion under P̃ obtained by an application of Girsanov’s Theorem, Theorem
5.2.3.
Corollary 5.3.2 of the Martingale Representation Theorem asserts that every martingale M̃(t), 0 ≤ t ≤ T , under
P̃ can be written as a stochastic integral with respect to W̃ (t), 0 ≤ t ≤ T . In other words, there exists an adapted
process Γ̃, 0 ≤ t ≤ T , such that

M̃(t) = M̃(0) +

∫ t

0

Γ̃(u)dW̃ (u), 0 ≤ t ≤ T

Now let V (T ) be an almost surely positive (“almost surely” means with probability one under both P and P̃ since
these two measures are equivalent), F(t)-measurable random variable. According to the risk-neutral pricing
formula (5.2.31), the price at time t of a security paying V (T ) at time T is

V (t) = Ẽ
[
e−

∫ T
t
R(u)duV (T )

∣∣∣F(t)
]
, 0 ≤ t ≤ T.

First, recall the Girsanov theorem.

Thm. 5.2.3. Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let F(t),
0 ≤ t ≤ T , be the filtration for this Brownian motion. Let Θ(t), 0 ≤ t ≤ T , be an adapted process. Define

Z(t) = exp

{
−
∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du

}
, (5.2.11)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du, (5.2.12)

and assume that

E
∫ T

0

Θ2(u)Z2(u)du <∞. (5.2.13)

Set Z = Z(T ). Then EZ = 1 and under the probability measure P̃ given by

P̃(A) =

∫
A

Z(ω)dP(ω), ∀A ∈ F , (5.2.1)

the process W̃ (t), 0 ≤ t ≤ T , is a Brownian motion.

Second, recall the Martingale representation theorem (MRT).

Thm. 5.3.1. Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let F(t),
0 ≤ t ≤ T , be the filtration generated by this Brownian motion. Let M(t), 0 ≤ t ≤ T , be a martingale with
respect to this filtration (i.e., for every t, M(t) is F(t)-measurable and for 0 ≤ s ≤ t ≤ T , E [M(t)|F ] = M(s)).
Then there is an adapted process Γ(u), 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u), 0 ≤ t ≤ T. (5.3.1)

Finally, the plan for this exercise can be summarised as follows.

1◦ When Mt is a positive P̃-martingale, then we can write

dM(t) = M(t) · 1

M(t)
dM(t). (1)

2◦ Apply MRT to conclude that there exists some adapted process Γ̃(t) such that

dM(t) = Γ̃(t)W̃ds. (2)
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3◦ Plug (2) into (1) to obtain

dM(t) = M(t)
Γ̃(t)

M(t)
W̃ds,

as any positive martingale can be expressed as the exponent of an integral w.r.t. the Brownian motion.

4◦ Add discounting D(t).

5◦ Apply the Itô product rule.

6◦ Infer that every positive asset is a generalized (because the volatility may be random) geometric Brownian
motion.

(i) Show that there exists an adapted process Γ̃(t), 0 ≤ t ≤ T , such that

dV (t) = R(t)V (t)dt+
Γ̃(t)

D(t)
dW̃ (t), 0 ≤ t ≤ T.

We had, for 0 ≤ t ≤ T ,

V (t) = Ẽ
[
e−

∫ T
t
R(u)duV (T )

∣∣∣F(t)
]
,

D(t) = e
∫ t
0
−R(u)du,

so that

D(t)V (t) = Ẽ
[
e
∫ t
0
−R(u)due−

∫ T
t
R(u)duV (T )

∣∣∣F(t)
]
,

= Ẽ
[
e−

∫ T
0
R(u)duV (T )

∣∣∣F(t)
]
,

= Ẽ [D(T )V (T )| F(t)] ,

which means that D(t)V (t) is a P̃-martingale. Hence, by MRT, there exists an adapted process Γ̃(t),
0 ≤ t ≤ T , such that

D(t)V (t) =

∫ t

0

Γ̃(t)dW̃ (s),

which implies

V (t) =
1

D(t)

∫ t

0

Γ̃(t)dW̃ (s)

= e
∫ t
0
R(s)ds

∫ t

0

Γ̃(t)dW̃ (s). (3)

Next, differentiate both sides of (3) to obtain

dV (t) = R(t)D(t)−1
(∫ t

0

Γ̃(s)dW̃ (s)

)
dt+D(t)−1Γ̃(t)dW̃ (t),

which means

dV (t) = R(t)V (t)dt+
Γ̃(t)

D(t)
dW̃ (t), (4)

yielding the required result.

(ii) Show that, for each t ∈ [0, T ], the price of the derivative security V (t) at time t is almost surely positive.

We want to show that for 0 ≤ t ≤ T

P̃(V (t) > 0) = P̃
(
Ẽ
[
e−

∫ T
t
R(u)duV (T )

∣∣∣F(t)
]
> 0
)

= 1.

To spare on notation, for the time being fix some t, 0 ≤ t ≤ T , and put

X := X(t) := e−
∫ T
t
R(u)duV (T ),

F := F(t),

Y := Y (t) := Ẽ[X(t)|F(t)].
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Clearly,
P̃(X > 0) = 1,

and by the property of conditional expectation

P̃({Y ≥ 0}) = 1.

So our goal is to show
P̃ ({Y = 0}) = 0.

Denote the above event by A, i.e. A := {Y = 0}. Naturally, A ∈ F .

Obviously, Ẽ[Y IA] = 0, so we have

0 = Ẽ[Y IA]
def.Y
= Ẽ[Ẽ[X|F ]IA]

= Ẽ[XIA].

Next, define

A0 := A ∩ {X ≥ 1} ,

An := A ∩
{

1

n
> X ≥ 1

n+ 1

}
.

We have further that

0 = Ẽ[XIA]

lin.
= Ẽ[XIA0

] +
∞∑
n=1

Ẽ[XIAn
]

MI

≥ 1 · P̃(A0)︸ ︷︷ ︸
=0

+

∞∑
n=1

1

n+ 1
P̃(An)︸ ︷︷ ︸

=0

= P̃(A ∩ {X > 0})
= P̃(A).

where MI stands for the Markov’s inequality2. Hence, indeed P̃(A) = 0, so we have shown that

P̃({Y = 0}) = 0,

which, by equivalence of P̃ and P, yields that also

P({Y = 0}) = 0.

We have put Y = Y (t) = V (t), therefore, indeed, V (t) is a.s. positive.

(iii) Conclude from (i) and (ii) that there exists an adapted process σ(t), 0 ≤ t ≤ T , such that

dV (t) = R(t)V (t)dt+ σ(t)V (t)dW̃ (t), 0 ≤ t ≤ T.

From the previous point we know that V > 0, a.s.. Hence, as we outlined in the beginning

dV (t) = V (t)
V (t)

V (t)
dV (t)

(4)
= V (t)

V (t)

V (t)

(
R(t)V (t)dt+

Γ̃(t)

D(t)
dW̃ (t)

)

= V (t)R(t)dt+ V (t)
Γ̃(t)

V (t)D(t)︸ ︷︷ ︸
:=σ(t)

dW̃ (t)

= V (t)R(t)dt+ σ(t)V (t)dW̃ (t),

which completes the proof and shows that V follows a generalised geometric Brownian motion.

In other words, prior to time T , the price of every asset with almost surely positive price at time T follows a
generalized (because the volatility may be random) geometric Brownian motion.

2Recall: if X is a nonnegative integrable random variable and a > 0, then

E[X] ≥ aP(X ≥ a).
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